Question Number	Acceptable Answers	Reject	Mark
1a(i)	Any two of O^+ , O^{2+} , O_2^+ , O_2^{2+} (1) for each correct ion ALLOW $^{16}O^+$, $^{16}O^{2+}$, $(^{16}O)_2^+$, $(^{16}O)_2^{2+}$ $^{16}O_2^+$, $^{16}O_2^{2+}$ $O=O^+/O=O^{2+}$ for O_2 ions Added mass numbers which describe a diatomic ion eg $^{32}O_2^+$ Added round or square brackets	O^{-} O^{2-} Ions of O_{3} Incorrect mass numbers eg 32 O^{+} Added incorrect atomic numbers Eg $^{16}O^{+}$ 9	(2)

Question Number	Acceptable Answers	Reject	Mark
1a(ii)	The magnetic field/ electromagnet/ electromagnetic	Gravitational field	(1)
	field	Just	
	OR	deflector/deflection	
	Deflection by magnetic field		
		Electric field	
	ALLOW		
	Deflection and magnetic field	Vacuum and magnetic field	
		Detector/ detection	

Question Number	Acceptable Answers	Reject	Mar k
field posi Line may	curved lines going towards the detector region with at least one hitting the detector ALLOW of straight line before curve starts if magnetic tion is not shown go up very slightly before it curves down, to keep it clear of lower line.	Straight lines Curvature away from detector/ concave curvature Line turning back upwards	(2)
	(1)		
	Labelling of paths depends on ions chosen:		
OR	Heavier ion shown as less deflected		
O ²⁺ more OR	e deflected than O ₂ + Iower charge shown as less deflected	Species which are not ions of oxygen	
	ALLOW Ions with negative charges (as already penalised in (i)) (1)		
	If chosen ions are O^+ and O_2^{2+} they will not be separated – answer must make this clear		
	(magnetic field) (magnetic field) heavier ion lighter lon or lighter lon or charged ion		

Question Number	Acceptable Answers		Reject	Mark
1(b)	Look at final answer 16. 004 scores (2) 16.00445 scores (1)			(2)
	Correct expression with incorrect final answer scores (1)	ct		
	(16x99.759 + 17x0.037 + 18x0.204)/100 OR			
	(16x0.99759 + 17x0.00037 + 18x0.00204)	(1)		
	=16.00445 =16.004 Ignore units	(1)	16.005	

Isotopic composition of oxygen in air varies	Air contains other gases	(1)
ALLOW The abundance of the isotopes of oxygen varies	Air contains many isotopes	
OR Oxygen standard was introduced before existence of oxygen isotopes was known	Oxygen has many isotopes	
OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance		
OR The answer is inaccurate unless a specified isotope is used	Just '12C standard	
OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer ALLOW It was difficult to obtain pure oxygen	is better' 12C standard gives a whole number	
	ALLOW The abundance of the isotopes of oxygen varies OR Oxygen standard was introduced before existence of oxygen isotopes was known OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance OR The answer is inaccurate unless a specified isotope is used OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer	ALLOW ALLOW The abundance of the isotopes of oxygen varies OR Oxygen standard was introduced before existence of oxygen isotopes was known OR OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance OR The answer is inaccurate unless a specified isotope is used OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer ALLOW It was difficult to obtain pure oxygen

Question Number	Acceptable Answers	Reject	Mark
1(d)	No difference as both isotopes have the same number of protons (and electrons)/ the same nuclear charge IGNORE Same electronic configuration OR No difference as only number of neutrons is different		(1)

(Total for Question = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	 (Atoms/elements/isotopes with) the same number of protons (and electrons) and different numbers of neutrons ALLOW answers in terms of bromine isotopes, 35 protons and 44 or 46 neutrons. IGNORE different number of nucleons IGNORE same atomic number but different mass number 		1

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	(High energy) electrons are 'fired' at/ Electrons bombard/Use of an ' electron gun' (1) (result in) loss of electron/electrons (thus	Magnetic field (0)	2
	forming an ion) This can be shown in an equation $X + e \rightarrow X^+ + 2e$ OR $X \rightarrow X^+ + e$ (1) Stand alone marks	Forms an anion	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Magnet/Magnetic field/Electromagnet	Electric field	1
		Magnetic shield	
		Magnetic radiation	

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	Particles (of gas/air) will interfere with the movement of the ions /collide with the ions /deflect ions OR Additional peaks will be detected/peaks at incorrect m/e IGNORE references to chemical reactions	Atoms for ions	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)	arking point 1Twin peaks of about the same height at 79and 81(1)		4
	Marking point 2Twin peaks of about the same height at 158and 162(1)		
	Marking point 3Peak at 160(1)		
	Marking point 4Peak at 160 approximately twice the heightof the peaks at 158 and 162(1)		
	IGNORE Small peak at 80 which could be due to Br_2^{2+} (79-81)		
	In MPs 1 and 2 penalise height difference once only		

Question Number	Acceptable Answers		Reject	Mark
2 (d)	$\left(\frac{47 \times 79}{100} + \frac{53 \times 81}{100}\right) = 80.06$	(1)		2
	(answer =) 80.1	(1)	Incorrect units of mass/%	
	Correct final answer without working scores	5 (2)		
	No TE on incorrect expression			

Question Number	Acceptable Answers	Reject	Mark
2 (e)	The (m/e) value would be halved	Peak half as high	1

Question Number	Acceptable Answers	Reject	Mark
2 (f)(i)	Any two from:	References to	2
	Sample kept sealed/ tamper-proof (1)	medication being taken	
	Sample stored and labelled clearly (1)		
	Sample stored in preservative/sample tested immediately after being taken (1)		
	Sample kept under temperature control (1)		
	Monitor sample is being taken from named competitor (1)		
	Check that other non-banned substances do not give similar mass spectrometry result (1)		
	Analysis repeated (to confirm result)/ Multiple samples taken/ Sample divided into two and tested at different times/ locations (1)		
	Container/equipment sterile/cleaned (1)	Just 'no	
	Run a control sample/ compare to a sample without drugs (1)	contamination'	
	Sampling to take place immediately after event (1)		
	Precautions need to be actions/activities that are carried out and not just a statement that something must or must not happen but how this is ensured or prevented		
	There will likely be other suggestions in addition to those given above which can be given credit if they are reasonable actions		

Question Number	Acceptable Answers	Reject	Mark
2 (f)(ii)	Health concerns/depression/bursts of anger/ acts of violence/heart attack/strokes/liver damage/masculine features in women/	Just 'Fear of being banned/prosecuted'	1
	harmful side effects Allow any suitable health concern	Just 'side effects'	

Question Number	Acceptable Answers	Reject	Mark
2(g)	Any suitable use such as: RAM/RMM calculations/Relative isotopic mass calculations/Space probes/ Pharmaceutical purity/testing of new pharmaceuticals/Age of rocks from Helium content/ Identification of unknown substances/ Carbon dating/Radioactive dating	Alcohol testing C-12 dating	1

TOTAL FOR QUESTION = 16 MARKS

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	The mark is for the idea of impact by high energy electrons		1
	Any ONE of: High-energy electrons Bombard with electrons Fast electrons (fired at sample) Accelerated electrons (fired at sample) (High-energy) electrons fired (at sample) (Sample) blasted with electrons Electron gun ALLOW "beam of electrons" IGNORE any comments about ionization of the sample whether correct or incorrect	High- density electrons	
	IGNORE descriptions of vaporisation		

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Electric field / (negatively) charged plates ALLOW voltage plates electrostatic field electrical field pushed by positively (charged) plate/ anode	Positively charged plates alone / electronic field / electric current / electricity / electrical charge / (electro) magnetic field / electric coil	1

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	Magnetic field /magnet / electromagnet /magnetic plates / electromagnetic field	Negative magnetic field/ negatively charged magnet	1

Question Number	Acceptable Answers	Reject	Mark
3(b)	(194 x 32.8) + (195 x 30.6) + (196 x 25.4) + (198 x 11.2)) ÷ 100 (1)		2
	= 195.262 = 195.3 (1 d.p.) (1)		
	Method(1)Answer must be to 1 d.p.		
	IGNORE g , g mol ⁻¹ or amu but other wrong units lose a mark		
	Correct answer with no working (2)		
	ALLOW TE for second mark if 1 numerical slip in transferring data from the table and answer to 1 d.p		

Question Number	Acceptable Answers	Reject	Mark
3 (c)	d(-block) ALLOW D(-block) IGNORE Transition element(s) / transition metal(s)		1

Question	Acceptable Answers		Reject	Mark
Number				
3(d)(i)	(Na): ✓ and ✓	(1)		2
	(Na₂O): X and ✓	(1)		

Question Number	Acceptable Answers	Reject	Mark
*3 (d) (Na: conducts when both solid and molten due to (delocalized)free / mobile electrons(1)Na2O: does not conduct when solid as no mobile ions / ions unable to move / ions in fixed position(1)	Ions with reference to either form of sodium metal electrons	3
	Na2O: conducts when molten as has mobile ions(1)	electrons	

Total for Question = 11 marks