Question Number	Acceptable Answers	Reject	Mark
1a(i)	Any two of $\mathrm{O}^{+}, \mathrm{O}^{2+}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{2+}$ (1) for each correct ion ALLOW $\begin{aligned} & { }^{16} \mathrm{O}^{+},{ }^{16} \mathrm{O}^{2+},\left({ }^{16} \mathrm{O}\right)_{2^{+}},\left({ }^{16} \mathrm{O}\right)_{2^{2+}} \\ & { }^{16} \mathrm{O}_{2}{ }^{+},{ }^{16} \mathrm{O}_{2}{ }^{2+} \end{aligned}$ $\mathrm{O}=\mathrm{O}^{+} / \mathrm{O}=\mathrm{O}^{2+} \text { for } \mathrm{O}_{2} \text { ions }$ Added mass numbers which describe a diatomic ion eg ${ }^{32} \mathrm{O}_{2}{ }^{+}$ Added round or square brackets	O^{-} O^{2-} Ions of O_{3} Incorrect mass numbers eg ${ }^{32} \mathrm{O}^{+}$ Added incorrect atomic numbers $\mathrm{Eg}{ }^{16} \mathrm{O}^{+}$ 9	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 a (i i)}$	The magnetic field/ electromagnet/ electromagnetic field OR Deflection by magnetic field ALLOW Deflection and magnetic field	Gravitational field Just deflector/deflection Electric field	(1)
Vacuum and			
magnetic field	Detector/ detection		

Question Number	Acceptable Answers	Reject	Mar k
1 a(iii) Section field pos Line may probably OR O^{2+} mor OR Ion with	curved lines going towards the detector region with at least one hitting the detector ALLOW of straight line before curve starts if magnetic ition is not shown go up very slightly before it curves down, to keep it clear of lower line. Labelling of paths depends on ions chosen: Heavier ion shown as less deflected deflected than $\mathrm{O}_{2}{ }^{+}$ lower charge shown as less deflected ALLOW Ions with negative charges (as already penalised in (i)) If chosen ions are O^{+}and $\mathrm{O}_{2}{ }^{2+}$ they will not be separated - answer must make this clear	Straight lines Curvature away from detector/ concave curvature Line turning back upwards Species which are not ions of oxygen	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b)}$	Look at final answer $\mathbf{1 6 . 0 0 4}$ scores (2) $\mathbf{1 6 . 0 0 4 4 5}$ scores (1) Correct expression with incorrect final answer scores (1) $\left(\begin{array}{ll}16 \times 99.759+17 \times 0.037+ \\ 18 \times 0.204) / 100 \\ \text { OR } \\ (16 \times 0.99759+17 \times 0.00037+ \\ 18 \times 0.00204)\end{array}\right.$ (1) $=16.00445$ $=16.004$ lgnore units		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	Isotopic composition of oxygen in air varies ALLOW The abundance of the isotopes of oxygen varies OR Oxygen standard was introduced before existence of oxygen isotopes was known gases	Air contains many isotopes	Oxygen has many isotopes
OR Some scientists used a standard based on one isotope while others used a value based on mixture in natural abundance	OR ORe answer is inaccurate unless a specified isotope is used OR 12C standard used because there are many 12C compounds which can be used to calibrate the mass spectrometer ALLOW It was difficult to obtain pure oxygen from air.	I2 whole number as standard gives	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d)}$	No difference as both isotopes have the same number of protons (and electrons)/ the same nuclear charge		(1)
	IGNORE Same electronic configuration OR No difference as only number of neutrons is different		

(Total for Question = 9 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	(Atoms/elements/isotopes with) the same number of protons (and electrons) and different numbers of neutrons	ALLOW answers in terms of bromine isotopes, 35 protons and 44 or 46 neutrons.	IGNORE different number of nucleons IGNORE same atomic number but different mass number

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	(High energy) electrons are 'fired' at/ Electrons bombard/Use of an 'electron gun' (1)	Magnetic field (0)	2
	(result in) loss of electron/electrons (thus forming an ion) This can be shown in an equation $\mathrm{X}+\mathrm{e} \rightarrow \mathrm{X}^{+}+2 \mathrm{e}$ OR $\quad \mathrm{X} \rightarrow \mathrm{X}^{+}+\mathrm{e} \quad$ (1) Stand alone marks	Forms an anion	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i)}$	Magnet/Magnetic field/Electromagnet	Electric field Magnetic shield Magnetic radiation	1

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	Particles (of gas/air) will interfere with the movement of the ions/collide with the ions/deflect ions OR Additional peaks will be detected/peaks at incorrect m/e IGNORE references to chemical reactions	Atoms for ions	1

Question Number	Acceptable Answers	Reject	Mark
2(c)	arking point 1 Twin peaks of about the same height at 79 and 81 Marking point 2 Twin peaks of about the same height at 158 and 162 Marking point 3 Peak at 160 Marking point 4 Peak at 160 approximately twice the height of the peaks at 158 and 162 IGNORE Small peak at 80 which could be due to $\mathrm{Br}_{2}{ }^{2+}$ (79-81) In MPs 1 and 2 penalise height difference once only		4

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | ---: | :--- | :--- |
| $\mathbf{2 (d)}$ | $\left(\frac{(17 \times 79)+(53 \times 81)}{100}\right)=80.06$ | (1) | 2 |
| (answer =) 80.1 | (1) | Incorrect units
 of mass/\% | |
| Correct final answer without working scores (2) | | | |
| No TE on incorrect expression | | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (e)}$	The $(\mathrm{m} / \mathrm{e})$ value would be halved	Peak half as high	1

Question Number	Acceptable Answers	Reject	Mark
2(f)(i)	Any two from: Sample kept sealed/ tamper-proof Sample stored and labelled clearly Sample stored in preservative/sample tested immediately after being taken Sample kept under temperature control Monitor sample is being taken from named competitor Check that other non-banned substances do not give similar mass spectrometry result Analysis repeated (to confirm result)/ Multiple samples taken/ Sample divided into two and tested at different times/ locations Container/equipment sterile/cleaned Run a control sample/ compare to a sample without drugs Sampling to take place immediately after event Precautions need to be actions/ activities that are carried out and not just a statement that something must or must not happen but how this is ensured or prevented There will likely be other suggestions in addition to those given above which can be given credit if they are reasonable actions	References to medication being taken Just ‘no contamination'	2

Question Number	Acceptable Answers	Reject	Mark		
2(f)(ii)	Health concerns/depression/bursts of anger/ acts of violence/heart attack/strokes/liver damage/masculine features in women/ harmful side effects Allow any suitable health concern	Just ‘Fear of being banned/prosecuted' Just ‘side effects'	1		
Question Number Acceptable Answers Reject Mark $\mathbf{2 (g)}$ Any suitable use such as: RAM/RMM calculations/Relative isotopic mass calculations/Space probes/ Pharmaceutical purity/testing of new pharmaceuticals/Age of rocks from Helium content/ Identification of unknown substances/ Carbon dating/Radioactive dating C-12 dating 1				$>.$	Alcohol testing
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i)}$	The mark is for the idea of impact by high energy electrons Any ONE of: High-energy electrons Bombard with electrons Fast electrons (fired at sample) Accelerated electrons (fired at sample) (High-energy) electrons fired (at sample) (Sample) blasted with electrons Electron gun	High-density electrons	
ALLOW "beam of electrons" IGNORE any comments about ionization of the sample whether correct or incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i i)}$	Electric field / (negatively) charged plates ALLOW voltage plates electrostatic field electrical field pushed by positively (charged) plate/ anode	Positively charged plates alone / electronic field / electric current / electricity / electrical charge / (electro) magnetic field / electric coil	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3}$ (a)(iii)	Magnetic field /magnet / electromagnet /magnetic plates / electromagnetic field	Negative magnetic field/ negatively charged magnet	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(b)	$\begin{align*} & (194 \times 32.8)+(195 \times 30.6)+(196 \times \\ & 25.4)+(198 \times 11.2)) \div 100 \\ & =195.262 \\ & =195.3(1 \text { d.p. }) \tag{1} \end{align*}$ Method Answer must be to $\mathbf{1} \mathbf{d . p}$. IGNORE $\mathrm{g}, \mathrm{g} \mathrm{mol}^{-1}$ or amu but other wrong units lose a mark Correct answer with no working ALLOW TE for second mark if 1 numerical slip in transferring data from the table and answer to $1 \mathrm{~d} . \mathrm{p}$		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c)}$	d(-block)		$\mathbf{1}$
	ALLOW D(-block) IGNORE Transition element(s) / transition metal(s)		

Question Number	Acceptable Answers		Reject	Mark
$\mathbf{3 (d) (i)}$	$\mathbf{(N a) : ~} \quad \checkmark$ and \checkmark	(1)		$\mathbf{2}$
	$\left(\mathbf{N a}_{\mathbf{2}} \mathbf{O}\right): \mathbf{x}$ and \checkmark			

Question Number	Acceptable Answers	Reject	Mark
*3 (d) 1	Na: conducts when both solid and molten due to (delocalized)free / mobile electrons $\mathbf{N a}_{\mathbf{2}} \mathbf{O}$: does not conduct when solid as no mobile ions / ions unable to move / ions in fixed position $\mathbf{N a}_{\mathbf{2}} \mathbf{O}$: conducts when molten as has mobile ions (1)	Ions with reference to either form of sodium metal electrons electrons	3

Total for Question = 11 marks

